A Ramsey type problem for highly connected subgraphs

Qiqin Xie

Shanghai University
qqxie@shu.edu.cn
Sun Yat-sen University
Oct. 13th, 2023

Overview

(1) Introduction

- Ramsey Theory
- The Connectivity Version
(2) Our Progress
- The Decomposition
- The Proof
- The Counterexample
(3) Future Works

Ramsey Theory

Ramsey Theory

Definition: Ramsey Number

For any given integers s, t, the Ramsey number $R(s, t)$ is the smallest integer n, such that for any 2-edge-colored (red/blue) K_{n}, there must exist a red K_{s} or a blue K_{t}.

Theorem (Ramsey, 1930)

For any given integers s, t, the Ramsey number $R(s, t)$ exists.

Ramsey Theory

Theorem

For any given integers $s_{1}, s_{2}, \ldots, s_{c}$, there exist Ramsey number $R\left(s_{1}, s_{2}, \ldots, s_{c}\right)$, such that for any c-edge-colored K_{n} where $n \geq R\left(s_{1}, s_{2}, \ldots, s_{c}\right)$, there must exist a $K_{s_{i}}$ in color i.

The Connectivity Version

Definition: k-connected

A graph is k-connected if and only if it has more than k vertices and does not have a vertex cut of size at most $k-1$.

Connectivity version Ramsey number: $r_{c}(k)$

Let $r_{c}(k)$ denote the smallest integer such that every c-edge-colored complete graph on $r_{c}(k)$ vertices must contain a k-connected monochromatic subgraph.

The Connectivity Version

Theorem (Matula, 1983)

- $2 c(k-1)+1 \leq r_{c}(k)<(10 / 3) c(k-1)+1$.
- $4(k-1)+1 \leq r_{2}(k)<(3+\sqrt{11 / 3})(k-1)+1$.

The Conjecture by Bollobás and Gyárfás

Béla Bollobás

András Gyárfás

The Conjecture by Bollobás and Gyárfás

Conjecture (Bollobás and Gyárfás, 2008)

Let k, n be positive integers. For $n>4(k-1)$, every 2-edge-colored K_{n} contains a k-connected monochromatic subgraph with at least $n-2 k+2$ vertices.

Known Results

Conjecture (Bollobás and Gyárfás, 2008)

Let k, n be positive integers. For $n>4(k-1)$, every 2-edge-colored K_{n} contains a k-connected monochromatic subgraph with at least $n-2 k+2$ vertices.

- True for $k \leq 2$; Sufficient to prove the conjecture holds for $4 k-3 \leq n<7 k-5$. (Bollobás and Gyárfás, 2008)
- True for $k=3$ and $n \geq 13 k-15$. (Liu, Morris, and Prince, 2009)
- True for $n>6.5(k-1)$ (Fujita and Magnant, 2011)
- True for $n>4(k-1) ? ? ?$ (Łuczak, 2016)

Our Progress

Theorem (Lo, Wu \& Xie, 2023+)

- For every $k \in \mathbb{Z}^{+}$, let $n=\left\lfloor 5 k-\sqrt{8 k-\frac{31}{4}}-2.5\right\rfloor$. There exists a 2-edge-colored K_{n}, such that there is no k-connected monochromatic subgraph, which contains at least $n-2 k+2$ vertices.
- Let $n, k \in \mathbb{Z}^{+}, k \geq 16$. If $n>5 k-\sqrt{8 k-\frac{31}{4}}-2.5$, then for any 2-edge-colored K_{n}, there exists a k-connected monochromatic subgraph, which contains at least $n-2 k+2$ vertices.

The inspiration

Definition: k-connected

A graph is k-connected if and only if it has more than k vertices and does not have a vertex cut of size at most $k-1$.

Lemma

A graph is k-connected if and only if it has more than k vertices and for any subset U of $V(G)$, either $|N(U)| \geq k$ or $N[U]=V(G)$.

Mader, 1972

Every graph with average degree at least $4 k$ has a $(k+1)$-connected subgraph with more than $2 k$ vertices.

The Decomposition

Definition: $(f(k), k)$-decomposition

Let $k \in \mathbb{Z}^{+}, f(k)$ be a non-negative function on k. Let G be a graph on n vertices, where $n \geq f(k)+k$. We define an $(f(k), k)$-decomposition of G to be a sequence of triples $\left\{\left(A_{i}, C_{i}, D_{i}\right)\right\}, i \in[1, I]$, such that
(1) $V(G)$ is a disjoint union of A_{1}, C_{1}, D_{1}
(2) $C_{i} \cup D_{i}$ is a disjoint union of $A_{i+1}, C_{i+1}, D_{i+1}, i \in[1, I-1]$
(3) $\left|C_{i}\right| \leq k-1, i \in[1, I]$
(1) $1 \leq\left|A_{i}\right| \leq\left|D_{i}\right|$, and there is no edge between A_{i} and $D_{i}, i \in[1, I]$
(6) $\left|C_{i}\right|+\left|D_{i}\right| \geq n-f(k), i \in[1, I-1]$
(0) $\left|C_{l}\right|+\left|D_{l}\right|<n-f(k)$

The Decomposition

The Decomposition

No k-connected subgraph \Rightarrow Decomposition

Let G be a graph on n vertices. If G has no k-connected subgraph with at least $n-f(k)$ vertices, then G has a $(f(k), k)$-decomposition.

Definition: strong decomposition

Let $\left\{\left(A_{i}, C_{i}, D_{i}\right)\right\}, i \in[1, l]$ be an $(f(k), k)$-decomposition of G. We say the decomposition is strong if for any $i \in[1, I],\left|A_{i} \cup C_{i}\right|<n-f(k)$.

Decomposition \Rightarrow No k-connected subgraph

Let G be a graph on n vertices. If G has a strong $(f(k), k)$-decomposition, then G has no k-connected subgraph with at least $n-f(k)$ vertices.

The Proof

- R : red graph B : blue graph $R \cup B$ covers G
- Maximize R and B (Note: $R \cap B \neq \emptyset$)
- Suppose G has no monochromatic k-connected subgraph with at least $n-2 k+2$ vertices.
- $\left\{A_{i}, C_{i}, D_{i}\right\}, i \in\left[1, I_{R}\right]$: decomposition in R
- $\left\{U_{s}, X_{s}, Y_{s}\right\}, s \in\left[1, I_{B}\right]$: decomposition in B
- $\left|A_{i}\right| \leq k-1,\left|U_{s}\right| \leq k-1$
- $A_{i},\left[A_{i}, C_{i}\right], C_{I_{R}} \cup D_{I_{R}}=A_{I_{R}+1}$ complete in red
- $U_{S},\left[U_{S}, X_{S}\right], X_{I_{B}} \cup Y_{I_{B}}=U_{I_{B}+1}$ complete in blue

The Proof

We use A to denote $\bigcup_{i=1}^{I_{R}} A_{i}$, and U to denote $\bigcup_{s=1}^{I_{B}} U_{s}$.

$$
(k-1)(|A|+|U|)+\sum_{i=1}^{I_{R}+1}\binom{\left|A_{i}\right|}{2}+\sum_{s=1}^{I_{B}+1}\binom{\left|U_{s}\right|}{2}=|R|+|B|=\binom{n}{2}+|R \cap B|
$$

The Proof

$$
\begin{aligned}
& (5 k-3-n)|A \cap U|-(2 k-1)-\frac{1}{2}|A \cap U|^{2} \\
= & (|A|-2 k+1)(|U|-2 k+1)+(|A|+|U|-4 k+2)(k-|A \cap U|) \\
& +\sum_{i=1}^{I_{R}} \sum_{s=1}^{I_{B}}\left((k-1)\left|A_{i} \cap U_{s}\right|-\frac{1}{2}\left|A_{i} \cap U_{s}\right|^{2}-\left|Q\left(A_{i} \cap U_{s}\right)\right|\right)+|P|
\end{aligned}
$$

- P consist of all edges that are both $A C$-type and $U X$-type, all the $A C$-type edges in $E\left(U_{I_{B}+1}, U_{I_{B}+1}\right)$, and all the $U X$-type edges in $E\left(A_{l_{R}+1}, A_{l_{R}+1}\right)$.
- Given a vertex $v \in A_{i} \cap U_{s}$, let $Q_{R}(v)$ be the family of edges $u v$ with u in $A_{i} \cap Y_{s}$. Similarly, we define $Q_{B}(v)$. Let $Q(v)=Q_{R}(v) \cup Q_{B}(v)$.

The Counterexample

Future Works

Related Problems

- Matula's Problem
- Generalize to multicolored graphs
- Independence number and k-connected subgraph

Applications of the methods

- Vertex Partition
- Applications

The End

