A Ramsey type problem for highly connected subgraphs

Qiqin Xie

Shanghai University

qqxie@shu.edu.cn

Sun Yat-sen University Oct. 13th, 2023

Introduction

- Ramsey Theory
- The Connectivity Version

2 Our Progress

- The Decomposition
- The Proof
- The Counterexample

3 Future Works

æ

ヘロト 人間 とくほとくほとう

Definition: Ramsey Number

For any given integers s, t, the Ramsey number R(s, t) is the smallest integer n, such that for any 2-edge-colored (red/blue) K_n , there must exist a red K_s or a blue K_t .

Theorem (Ramsey, 1930)

For any given integers s, t, the Ramsey number R(s, t) exists.

Theorem

For any given integers s_1, s_2, \ldots, s_c , there exist Ramsey number $R(s_1, s_2, \ldots, s_c)$, such that for any *c*-edge-colored K_n where $n \ge R(s_1, s_2, \ldots, s_c)$, there must exist a K_{s_i} in color *i*.

Definition: *k*-connected

A graph is k-connected if and only if it has more than k vertices and does not have a vertex cut of size at most k - 1.

Connectivity version Ramsey number: $r_c(k)$

Let $r_c(k)$ denote the smallest integer such that every *c*-edge-colored complete graph on $r_c(k)$ vertices must contain a *k*-connected monochromatic subgraph.

The Connectivity Version

Theorem (Matula, 1983)

•
$$2c(k-1) + 1 \le r_c(k) < (10/3)c(k-1) + 1.$$

• $4(k-1) + 1 \le r_2(k) < (3 + \sqrt{11/3})(k-1) + 1.$

Qiqin Xie (Shanghai University)

æ

The Conjecture by Bollobás and Gyárfás

Béla Bollobás

András Gyárfás

The Conjecture by Bollobás and Gyárfás

Conjecture (Bollobás and Gyárfás, 2008)

Let k, n be positive integers. For n > 4(k - 1), every 2-edge-colored K_n contains a k-connected monochromatic subgraph with at least n - 2k + 2 vertices.

Conjecture (Bollobás and Gyárfás, 2008)

Let k, n be positive integers. For n > 4(k - 1), every 2-edge-colored K_n contains a k-connected monochromatic subgraph with at least n - 2k + 2 vertices.

- True for $k \le 2$; Sufficient to prove the conjecture holds for $4k 3 \le n < 7k 5$. (Bollobás and Gyárfás, 2008)
- True for k = 3 and $n \ge 13k 15$. (Liu, Morris, and Prince, 2009)
- True for n > 6.5(k-1) (Fujita and Magnant, 2011)
- True for n > 4(k-1)?? (Łuczak, 2016)

<日

<</p>

Theorem (Lo, Wu & Xie, 2023+)

• For every $k \in \mathbb{Z}^+$, let $n = \lfloor 5k - \sqrt{8k - \frac{31}{4} - 2.5} \rfloor$. There exists a 2-edge-colored K_n , such that there is no k-connected monochromatic subgraph, which contains at least n - 2k + 2 vertices.

Let n, k ∈ Z⁺, k ≥ 16. If n > 5k - √8k - ³¹/₄ - 2.5, then for any 2-edge-colored K_n, there exists a k-connected monochromatic subgraph, which contains at least n - 2k + 2 vertices.

Definition: k-connected

A graph is k-connected if and only if it has more than k vertices and does not have a vertex cut of size at most k - 1.

Lemma

A graph is k-connected if and only if it has more than k vertices and for any subset U of V(G), either $|N(U)| \ge k$ or N[U] = V(G).

Mader, 1972

Every graph with average degree at least 4k has a (k + 1)-connected subgraph with more than 2k vertices.

< 同 ト < 三 ト < 三 ト

Definition: (f(k), k)-decomposition

Let $k \in \mathbb{Z}^+$, f(k) be a non-negative function on k. Let G be a graph on n vertices, where $n \ge f(k) + k$. We define an (f(k), k)-decomposition of G to be a sequence of triples $\{(A_i, C_i, D_i)\}, i \in [1, l]$, such that

- V(G) is a disjoint union of A_1, C_1, D_1
- 2 $C_i \cup D_i$ is a disjoint union of $A_{i+1}, C_{i+1}, D_{i+1}, i \in [1, l-1]$
- **③** $|C_i| ≤ k 1, i ∈ [1, I]$

• $1 \leq |A_i| \leq |D_i|$, and there is no edge between A_i and D_i , $i \in [1, I]$

◎
$$|C_i| + |D_i| \ge n - f(k), i \in [1, l - 1]$$

$$|C_l| + |D_l| < n - f(k)$$

く 白 ト く ヨ ト く ヨ ト

The Decomposition

.

∃ ► < ∃ ►</p>

• • • • • • • •

æ

No *k*-connected subgraph \Rightarrow Decomposition

Let G be a graph on n vertices. If G has no k-connected subgraph with at least n - f(k) vertices, then G has a (f(k), k)-decomposition.

Definition: strong decomposition

Let $\{(A_i, C_i, D_i)\}$, $i \in [1, I]$ be an (f(k), k)-decomposition of G. We say the decomposition is strong if for any $i \in [1, I]$, $|A_i \cup C_i| < n - f(k)$.

Decomposition \Rightarrow No *k*-connected subgraph

Let G be a graph on n vertices. If G has a strong (f(k), k)-decomposition, then G has no k-connected subgraph with at least n - f(k) vertices.

イロト 不得 トイヨト イヨト 二日

- R: red graph B: blue graph $R \cup B$ covers G
- Maximize R and B (Note: $R \cap B \neq \emptyset$)
- Suppose G has no monochromatic k-connected subgraph with at least n − 2k + 2 vertices.
- $\{A_i, C_i, D_i\}, i \in [1, I_R]$: decomposition in R
- $\{U_s, X_s, Y_s\}, s \in [1, I_B]$: decomposition in B

•
$$|A_i| \le k - 1$$
, $|U_s| \le k - 1$

- A_i , $[A_i, C_i]$, $C_{l_R} \cup D_{l_R} = A_{l_R+1}$ complete in red
- U_s , $[U_s, X_s]$, $X_{l_B} \cup Y_{l_B} = U_{l_B+1}$ complete in blue

A (1) < A (2) < A (2) </p>

We use A to denote $\bigcup_{i=1}^{l_R} A_i$, and U to denote $\bigcup_{s=1}^{l_B} U_s$.

$$(k-1)(|A|+|U|) + \sum_{i=1}^{l_R+1} \binom{|A_i|}{2} + \sum_{s=1}^{l_B+1} \binom{|U_s|}{2} = |R|+|B| = \binom{n}{2} + |R \cap B|$$

리아 세 레아

Image: A matrix and a matrix

2

$$(5k-3-n)|A \cap U| - (2k-1) - \frac{1}{2}|A \cap U|^2$$

=(|A| - 2k + 1)(|U| - 2k + 1) + (|A| + |U| - 4k + 2)(k - |A \cap U|)
+ $\sum_{i=1}^{l_R} \sum_{s=1}^{l_B} ((k-1)|A_i \cap U_s| - \frac{1}{2}|A_i \cap U_s|^2 - |Q(A_i \cap U_s)|) + |P|.$

- *P* consist of all edges that are both *AC*-type and *UX*-type, all the *AC*-type edges in $E(U_{I_B+1}, U_{I_B+1})$, and all the *UX*-type edges in $E(A_{I_R+1}, A_{I_R+1})$.
- Given a vertex $v \in A_i \cap U_s$, let $Q_R(v)$ be the family of edges uv with u in $A_i \cap Y_s$. Similarly, we define $Q_B(v)$. Let $Q(v) = Q_R(v) \cup Q_B(v)$.

The Counterexample

æ

< □ > < □ > < □ > < □ > < □ >

Related Problems

- Matula's Problem
- Generalize to multicolored graphs
- Independence number and k-connected subgraph

Applications of the methods

- Vertex Partition
- Applications

∃ >

The End

Qiqin Xie (Shanghai University)

æ

メロト メポト メヨト メヨト